Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy.

نویسندگان

  • Ferrill F Rose
  • Virginia B Mattis
  • Hansjörg Rindt
  • Christian L Lorson
چکیده

Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. SMA is caused by loss of functional survival motor neuron 1 (SMN1), resulting in death of spinal motor neurons. Current therapeutic research focuses on modulating the expression of a partially functioning copy gene, SMN2, which is retained in SMA patients. However, a treatment strategy that improves the SMA phenotype by slowing or reversing the skeletal muscle atrophy may also be beneficial. Myostatin, a member of the TGF-beta super-family, is a potent negative regulator of skeletal muscle mass. Follistatin is a natural antagonist of myostatin, and over-expression of follistatin in mouse muscle leads to profound increases in skeletal muscle mass. To determine whether enhanced muscle mass impacts SMA, we administered recombinant follistatin to an SMA mouse model. Treated animals exhibited increased mass in several muscle groups, elevation in the number and cross-sectional area of ventral horn cells, gross motor function improvement and mean lifespan extension by 30%, by preventing some of the early deaths, when compared with control animals. SMN protein levels in spinal cord and muscle were unchanged in follistatin-treated SMA mice, suggesting that follistatin exerts its effect in an SMN-independent manner. Reversing muscle atrophy associated with SMA may represent an unexploited therapeutic target for the treatment of SMA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy.

Spinal muscular atrophy is a leading genetic cause of infantile death and occurs in approximately 1/6000 live births. SMA is caused by the loss of Survival Motor Neuron-1 (SMN1), however, all patients retain at least one copy of a nearly identical gene called SMN2. While SMN2 and SMN1 are comprised of identical coding sequences, the majority of SMN2 transcripts are alternatively spliced, encodi...

متن کامل

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

SMN1 and NAIP genes deletions in different types of spinal muscular atrophy in Khuzestan province, Iran

 Background: Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disease. It is a neuromuscular disorder caused by degenerative of lower motor neurons and occasionally bulbar neurons leading to progressive limb paralysis and muscular atrophy. The SMN1 gene is recognized as a SMA causing gene while NAIP has been characterized as a modifying factor for the clinical ...

متن کامل

PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modu...

متن کامل

O-27: Preimplantation Genetic Diagnosis in Prevention of Genetic Diseases -Diagnostic of Spinal Muscular Atrophy (SMA)

Background: Preimplantation genetic diagnosis - PGD is currently an established procedure allowing genetic research of oocyte or embryo before implantation to the uterus. Spinal muscular atrophy (SMA) is a neurodegenerative disorder, being the second most common lethal autosomal recessive disease in Caucasians, after cystic fibrosis. There are three clinically different types of which type I (W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2009